Las computadoras digitales utilizan el sistema de números binarios, que tiene dos dígitos 0 y 1. Un dígito binario se denomina un bit. La información está representada en las computadoras digitales en grupos de bits. Utilizando diversas técnicas de codificación los grupos de bits pueden hacerse que representen no solamente números binarios sino también otros símbolos discretos cualesquiera, tales como dígitos decimales o letras de alfabeto. Utilizando arreglos binarios y diversas técnicas de codificación, los dígitos binarios o grupos de bits pueden utilizarse para desarrollar conjuntos completos de instrucciones para realizar diversos tipos de cálculos.
La información binaria se representa en un sistema digital por cantidades físicas denominadas señales, Las señales eléctricas tales como voltajes existen a través del sistema digital en cualquiera de dos valores reconocibles y representan una variable binaria igual a 1 o 0. Por ejemplo, un sistema digital particular puede emplear una señal de 3 volts para representar el binario "1" y 0.5 volts para el binario "0". La siguiente ilustración muestra un ejemplo de una señal binaria.
La lógica binaria tiene que ver con variables binarias y con operaciones que toman un sentido lógico. La manipulación de información binaria se hace por circuitos lógicos que se denominan Compuertas. Las compuertas son bloques del hardware que producen señales en binario 1 ó 0 cuando se satisfacen los requisitos de entrada lógica. Las diversas compuertas lógicas se encuentran comúnmente en sistemas de computadoras digitales. Cada compuerta tiene un símbolo gráfico diferente y su operación puede describirse por medio de una función algebraica. Las relaciones entrada - salida de las variables binarias para cada compuerta pueden representarse en forma tabular en una tabla de verdad
Puerta SIM o BufferX54
La puerta lógica SI, realiza la función booleana igualdad. En la práctica se suele utilizar como amplificador de corriente (buffer en inglés).
La ecuación característica que describe el comportamiento de la puerta SI es: F=A
Su tabla de verdad es la siguiente:
La ecuación característica que describe el comportamiento de la puerta SI es: F=A
Su tabla de verdad es la siguiente:
Puerta Y (AND)
La puerta lógica Y, más conocida por su nombre en inglés AND, realiza la función booleana de producto lógico. Su símbolo es un punto (·), aunque se suele omitir. Así, el producto lógico de las variables A y B se indica como AB, y se lee A y B o simplemente A por B.
La ecuacion característica que describe el comportamiento de la puerta AND y
su tabla de verdad son las siguientes:
su tabla de verdad son las siguientes:
Se puede definir la puerta AND, como aquella compuerta que entrega un 1 lógico sólo si todas las entradas están a nivel alto 1
Puerta lógica O
Más conocida por su nombre en inglés OR, realiza la operación de suma lógica.
La ecuacion característica que describe el comportamiento de la puerta OR y su tabla de verdad son las siguientes:
Puerta OR-exclusiva (XOR)
Se puede definir esta puerta como aquella que da por resultado uno, cuando los valores en las entradas son distintos. ej: 1 y 0, 0 y 1 (en una compuerta de dos entradas).
Si la puerta tuviese tres o más entradas, la XOR tomaría la función de suma de paridad, cuenta el número de unos a la entrada y si son un número impar, pone un 1 a la salida, para que el número de unos pase a ser par. Esto es así porque la operación XOR es asociativa
La ecuacion característica que describe el comportamiento de la puerta XOR y su tabla de verdad son las siguientes:
No hay comentarios:
Publicar un comentario